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Rectangular resonators on infinite and 
semi-infinite channels 

By V. T. BUCHWALD A N D  N. V. WILLIAMS? 
School of Mathematics, University of New South Wales, Kensington 

(Received 18 October 1973 and in revised form 1 May 1974) 

The surface elevations in a strip 0 < y < b and in a rectangle - d  < y < 0, 
1x1 < a are expressed as a Fourier integral and Fourier series respectively. Using 
a Galerkin technique to match boundary conditions, the solution to  the general 
problem of the response of a rectangular resonator to inviscid shallow-water 
waves in infinite and semi-infinite channels is obtained. 

Theoretical results are compared with laboratory experiments of James 
(1970, 1971a, b ) .  Agreement is generally very good, except that the inviscid 
and linear theory does not predict the observed large energy losses in the reson- 
ator at resonance. 

The theory is also applied to a geometry corresponding to the Gulf of Car- 
pentaria, and the calculated response of the Gulf to semi-diurnal tides gives a 
zero response a t  Kuramba, in agreement with observations. The full response of 
the Gulf is calculated in subsequent work (Williams 1974) which takes the effects 
of the earth’s rotation into account. 

1. Introduction 
The initial intention of this investigation was to obtain a first approximation 

to the tidal problem in the Gulf of Carpentaria. Assuming a simplified geometry, 
and that the effects of friction and the earth’s rotation are comparatively small, 
the tidal problem was reduced to the determination of the response of a rectangu- 
lar sea to a tidal input from a canal whose width is of the same order as the dimen- 
sions of the sea (see figure I b) .  During the course of the investigation James 
(1970) published the results of laboratory experiments on the effects of resonators 
on the transmission of water waves in rectangular canals. The intention of this 
paper, then, is to obtain a theoretical model for the response of a rectangular 
resonator in either an open canal or an L-shaped canal, as in figures 1 (a) and (b).  
The results of this general investigation can then be applied to both the above 
experimental situations. 

The mathematical methods used are fairly standard (for instance, Miles 1947; 
Miles & Munk 1961; Miles & Gilbert 1968), although there are some analytic and 
computational points which are special to this case. In  addition, rather than 
using the variational formulation adopted by previous authors, we shall use the 
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somewhat simpler Galerkin technique for solving the integral equations obtained, 
the accuracy of the solution being tested in each case by consideration of the size 
of the actual discrepancies in the quantities being matched approximately a t  the 
boundaries. 

In  order to illustrate some of the features of wave propagation in a canal and 
the response of a resonator, we shall first consider in $ 3  the problem of a narrow 
resonator, and its effect on the transmission of waves along the canal. Some of the 
general results obtained in this simpler case illustrate certain of the physical 
properties which will be obtained later by numerical computation. Miles (1947) 
has considered somewhat similar problems for narrow wave guides, but the 
methods used in this paper are useful in a greater variety of situations. The general 
theory of wide resonators is given in $ 4. 

In  $5 numerical results are obtained and are found to be in excellent agree- 
ment with the experimental results of James (197 1 a, b ) ,  except that there seems 
to be a large loss of energy near resonance in the laboratory experiments, perhaps 
due to nonlinear effects a t  resonance. Finally, in $ 6  some preliminary results on 
the tidal problem in the Gulf of Carpentaria are obtained. These show sufficiently 
good agreement with observations to warrant further refinement of the theo- 
retical model. 
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2. Formulation of the basic equation 

for the surface displacement cj is 
Assuming inviscid and linear shallow-water theory, the reduced equation 

where the subscripts j = 1 and 2 refer to the resonator and channel region, 
respectively. The x and y axes are horizontal and in the directions illustrated 
in figure 1.  The channel, of depth h,, occupies the strip 0 < y < b, and the reson- 
ator, of depth h,, occupies the rectangle - d  < y < 0, 1x1 < a, being connected 
to the channel across the boundary at y = 0, 1x1 < a. 

In (2.1) it is assumed that Cj contains an implicit harmonic time factor 

exp ( - iw't), 

where (Of  = w + i s  (2.2) 

and E 4 w .  The purpose of the small imaginary part in w' is to apply automatically 
a radiation condition to waves from the resonator, after which the limit E --f 0 
gives the steady state. Then, in (2.1), 

k: = w'2/ghj, j = 1,2.  (2.3) 

The respective depth-averaged velocities qj = (uj,  vj) are given by 

i w q j  = gV&. (2.4) 

Prom (2.4) the boundary conditions are 

(ii) acl/ay = O for y = - d ,  1x1 < a, 

(iii) dc1/ax = 0 for 0 > y > - d ,  x = + a ,  

while the continuity conditions across the resonator mouth are (Bartholomeuzs 
1958) 

( 2 . 8 ~ )  

(2.8b) 

The symmetric case 

Let us suppose first of all that el, c2 andf(x) are even functions of x. A general 
expression for el is the Fourier expansion 

where pa = w / a ,  which satisfies the boundary conditions (2.6) and (2.7) and the 
differential equation (2.1) provided that 

(2.10) 
32-2 
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Moreover, if, as in (2.8b), hlacw/ay = f(x) at  y = 0, we have that 
m 

(2.11) 

where f n  and An are related by 

Anh,p,,sinpnd+fn = 0. (2.12) 

Now suppose that in the channel 

c z  = cos + Czs, (2.13) 

where cOs is the symmetric part of an incident disturbance which satisfies 

aCos/ay = 0 for y = 0, b, all x, (2.14) 

while c, satisfies the conditions (2.5) and (2.8) and represents the waves radi- 
ating from the resonator. Then c2s may be written as the Fourier integral 

= # ( A )  cosh ~ ( y  - b )  cos Ax dA. (2.15) 
0 

This satisfies (2.1) and ( 2 . 5 ~ )  if 
G = ( P - k ; ) l ,  

and (2.5b) and (2.8b) provided that 

hzg sinh a b  # ( A )  = - 

(2.16) 

(2.17) 

by (2.11). Finally, ( 2 . 8 ~ )  is satisfied if 

cos(x, 0) + L2s(x, 0) = ClS(X7 01, 1x1 < a, (2.18) 

where cOs is a given symmetric function, and, in terms of the unknown f n ,  
W 

' I ~ I S ( ~ ,  0) = - C (fn/Pn)COSpnXCOtpnd, (2.19) 
n=O 

The problem, then, is to determine the coefficients f, so that (2.18) is satisfied. 

The antispmetric case 

We now assume that C l A , C S A  and g(x) are odd functions. In this case 
m 

n=O 

m 

n=O 

ClA(x, y) = C Bnsin/hn,xcospn, (Y + d ) ,  (2.21) 

dx) == S gnsinpn,x, (2.22) 

where pnt = (IG: -p2,.)*, pn, = n'nla, n' = n+ 1 2 (2.23) 

and Bn hlpnt sin p ,  d + gn = 0. (2.24) 
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Again suppose that 

where Coa is the antisymmetric part of some incident disturbance and 

C2 = COA + CZA, 

C&i = j $ ( A )  cosh a(y - b) sin hxdh, 
0 

where CT is given by (2.16). Inverting the sine transforms for y = 0 gives 

2hcosah ( - l )"g,  
h,asinhub@(h) = - 7r ,=O 2 p;.-hZ' 

50 1 

(2 .25)  

(2.26) 

(2.27) 

Equating surface elevations at  the mouth of the resonator again results in an 
equation of the form (2.18), with, in this case, 

m 

hIClA(x, 0) = - C (gn/Pn,)Sinpn,xcotpn,d (2.28) 
n=O 

3. The narrow resonator 
In  order to illustrate some of the features of the response of the resonator 

we first consider the case in which 2k,a < 1, that is the width of the resonator 
is much less than (2n)-l x (length of the incoming wave). 

We assume that without the resonator there is a wave in the channel repre- 
sented by 

Cz = Zexp[i(k,x-o't)], (3.1) 

so that as a first approximation 
Cos = 

in (2.18), and CoA = 0 in the corresponding equation in the antisymmetric case. 
We also assume that the velocity v is uniform across the mouth of the resonator, 
so that the series in (2.9) is approximated by its first term and fn = 0 for all 
n 1 in (2.11), (2.17), (2.19) and (2.20). We now satisfy (2.18) on the average, 
i.e. by integrating this equation from -a  to a, with the result that 

where 

and 

A,  = - fo/h,lcl sin k,d = Z/r, 

I? = cosk,d-Rk,sink,d 

sinah 2 m 

A = a+ip = "s 0 r lco thcb(T)  dh,  

with 7 = hl/h2. 

The integral in (3.5) can be extended over the whole of the real line and then 
evaluated by standard methods of contour integration. The poles of the integrand 
are at  h = 0, at h = +A,, 0 < n 6 N ,  andat  h = kip,, n 2 #+I, where 

h2, = ki - n2+/b2, p i  = n27r2/b2 - ki, (3.6) 
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and N is such that nn/b < 2Z[k2) €or n 6 N while nnjb > 9(k2)  €or n 
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N +  1. 
Remembering that t2, contains a small positive imaginary part O(e), we obtain 
the result 

where q, = 4 and E ,  = 1 for all other n.  Note that both a! and p are O(a) as a .+ 0. 
This is obvious in the case of p, but the well-known series 

needs to be used to prove the result for a!. The greatest amplitude of [, occurs at 
y = - d,  when 1cl1 = lAol, arid this is a maximum when I I’l is a minimum. Assum- 
ing that E in (3.2) is vanishingly small and that kla is small enough so that terms 
O(k:a2) may be neglected, resonance for fixed w’ aiid varying d occurs when 
d = d,, where 

(3.9) 

and the resonant amplitude Ahrn) is given by 

k,d,, = $71 - ak,  + mn- + O(aZk?), m = 0,  I ,  2 ,  . . ., 

( - l)”Ahm;”’ = iZ /pk ,  + O(ak,). (3.10) 

On the other hand, if d is fixed and w‘ is variable, then at resonance 

O J ~  = (ghl)* kim’, 

where kim) d = (m + 4) n( 1 - a/d), (3.11) 

and ( -  1)mAhm;”’ = ied/(m+&)np+O(l) (3.12) 

as a/d + 0. I n  particular, when N = 0,  then, for small a,  (3.8) simplifies to 

p = (Ta/k,b) (1 + O(a2kz)), 

SO that, noting that k,/k,  = 7-9, it follows from (3.10) that the resonant amplitude 
is given by 

( -  l)mAhrn) = iZb/ad ,  

which is independent of the resonant frequency and of m, in all cases where the 
frequency satisfies the inequality 

w2 < gh2z2b2, 

so that N = 0. Note that the result in (3.9) is the first-order correction to  the 
quarter-wavelength resonance assumed by Valembois (1953) for a narrow 
resonator. 

We are also interested in the amplitudes of the reflected and transmitted 
waves in the channel. Prom (2.15)) (2.17) and (3.3)) 

eiAx dh. 
f,, 1 -OD sin ah cosh cr(y - b )  
n-h2 --OD hcrsinhcrb CW(GY)  = -- (3.13 
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The integral is evaluated by completing a circuit with a large semicircular con- 
tour in the upper half-plane if x > a and in the lower half-plane if x < - a, with 
the result that 

where A, A, and p, are defined in (3.5) and (3.6). We now see that the poles a t  
h = On, near the real axis, correspond to the N +  1 real modes of propagation in 
the channel, while the poles a t  h = ip, give modes which decay as 1x1 -+ co. 

In  particular, if N = 0, there is only one possible mode of propagation in the 
channel. At resonance w f  and k,d are given by (3.9), and then, if uk, is sufficiently 
small to assume that sin uk, z ak,, 

CW = -Zexp(ik,lxl)+decaying modes, 1x1 > a. (3.15) 

Comparing this with (3.1),  we recover the result that a t  resonance the incident 
wave is completely reflected with a change of phase, and there is no transmitted 
wave. In  the general case we have that a t  resonance for 1x1 > a 

N 

e,h;l <2s = - 2 e,h;l cos (nnrylb) exp (ih,lxl) +decaying modes. 
{ n r o  I n=O 

Note that if k, = nn/b + S, where S is small, then or is near the cut-off frequency 
of the nth mode, and to within O( S), the whole of the energy is converted into the 
nth mode. 

The analysis in this section has been carried out for an infinite channel as in 
figure I (a). However, it also applies to a semi-infinite resonator, as in figure 1 (b ) ,  
by simply assuming that instead of (3.1) 

<: = Z cos li,xe-i"'t. 

4. The theory of wide resonators 
In  this section we drop the assumption of the previous section that ak, < 1, 

and adopt a Galerkin technique to determine the coefficients f, in (2.18) and the 
coefficients g, in the equivalent to (2.18) in the antisymmetric case. 

Assume first that c0(x, 0) is symmetric about x = 0, multiply (2.18) by cosp,,x 
(where pm = nn/a) and integrate with respect to  x over the interval [-a, a] to 
obtain the sequence of equations 

for m = 0, 1, 2, .. ., etc., where 

and (4.3) 
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Note that I, ,  is the integral in (3.5) and that I,, may be similarly evaluated in 
series form by contour integration. Note also that for an incident plane wave as 
in(3.1) 

The sequence of equations (4.1) is solved approximately by terminating the 
series a t  m = M -  1, whence estimates for f ,  for m < M are obtained. Approxi- 
mate forms for cls(x, y) are now obtained from (2.9) and (2.12), and for cZs(x, y) 
from (2.15) and (2.17). The extent to which the relation (2.18) is satisfied with 
increasing M will give a test of the efficiency of the method, as will the rate of 
convergenceof the f,, with m fixed, for increasing M .  Details of the computational 
procedure may be found in Williams (1973), as may details of the antisymmetric 
case, and for the L-shaped resonator a t  the end of a semi-infinite channel. 

Km = 2k2Zsinak2( - l ) m / ( k ~ - p ~ ) .  (4.4) 

5. Infinite channels 
The theoretical and numerical results in this section are intended as comple- 

mentary to the laboratory experiments of James (1970,1971a7 b ) .  The theoretical 
results give a very accurate prediction of the geometry and frequencies for 
which resonance or anti-resonance takes place, as well as a good prediction of the 
response of the system when not in resonance. However, at resonance it would 
appear that in the laboratory situation at least half the energy of the incident 
wave is lost within the immediate neighbourhood of the resonator. 

In order to establish the accuracy of the theory, we shall first consider in detail 
a particular case, not near resonance. It will be seen that in this case the Galerkin 
procedure converges rapidly, and for iM = 10 there is excellent agreement 
between the displacements calculated a t  the boundary between the channel and 
resonator. We shall next consider cases which can be compared directly with the 
experimental results, and the section will then be concluded with some calcula- 
tions for geometries for which experimental results are not available. 

A detailed example 

Assume that h, = h,, so that k, = k, = k and the wavelength of the incident wave 
W = 2rr/k. The actual numerical values taken in this example are 

Tables 1 and 2 give the computed values of the f ,  and g,, respectively, for 
M = 2,4,6,8 and 10. Comparison of computed displacements on either side of 
the junction line a t  1x1 < a ,  y = 0 shows very good agreement for M = 10, 
except for some discrepancies near the corners a t  x = 

The theoryinthispaperisforshallowwater,andisvalidifh/W < 1. On theother 
hand, the parameters in James’s experiments do not satisfy this criterion. Never- 
theless, if we assume that h, = h2 = h, then the two theories are entirely analogous 
in the sense that all geometrical results are identical. The only difference is that, 
i f z  is the frequency in the laboratory and o the frequency in the shallow-water 
theory, then (i3/u)2 = (W/277h) tanh (2nh/W). 

Assuming, then, a uniform depth h, computed and observed results can be com- 
pared directly. 

2a/W = 0.34, b/W = 0.385, d/W = 0.20. (5.1) 

a. 
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fo 
fi - 
f 2  

f3 

f 4  

f s  
f s  
f 7  

fs 
f P  

M = 4  M = 6  M = 8  M = 10 

1.478 - 1.245; 
- 0.170 + 0.143; 

0448- 0.125; 
-0~124+0~104i  

1.480- 1.250; 
- 0.173 + 0.1 46i 

0.151 - 0'128i 
- 0.127 + 0.107i 

0.110- 0.093; 
- 0.098 + 0.082i 

1.481 - 1.252; 
- 0.174 + 0.147; 

1.481 - 1.253; 
- 0.175 + 0.148; 

0.153- 0.129; 0.154- 0.130; 
- 0.128+0.109i - 0.130+0.110i 

0.112- 0.094; 0.113-0.095i 
- 0.101 + 0.085; - 0.099 + 0.084i 

0.090- 0.076i 0.092 - 0.78; 
- 0.083 + 0'070i - 0.085 + 0.072i 

- 0.080 - 0.06Si 
- - 0.075 0.063i 

TABLE 1. Values of fn for various M 

M = 2 M = 4  M = 6  11.1 = 8 M = 10 

0.045 + 0.521i 
- 0.016- 0.182; 

0.011 +0.122i 
- 0.008 - 0.095; 

0.007 + 0.079; 
- 0.006 - 0.068; 

0.045 + 0.521; 
- 0.016 - 0.182; 

0.011+0.123i 
- 0.008 - 0.096; 
- 0.007 + 0.080; 
- 0.006 - 0.069i 

0.005 + 0.062i 
- 0.005 - 0.056; 

0.045 + 0.521; 
- 0.016 - 0.183; 

0.01 1 + 0.123; 
- 0.008 - 0.09% 

0.007 + 0.081; 

0.005 + 0.063i 

0.005 + 0.053i 

- 0.006 - 0.070i 

-0.005 - 0.057i 

- 0'004 - 0.049i 

TABLE 2. Values of gn for various M 

Comparison with experiment 

Assuming an incident wave of unit amplitude, figure 2 shows computed and 
experimental values of the amplitudes of the transmitted and reflected waves 
for varying dlW, with 2a/W = 0.34 and b/W = 0.385. Noting that for this 
value of b/W only one mode is possible in the channel, the zero reflectivity a t  
d/W = 0.155 corresponds to actual resonance. The calculated values of the trans- 
missivity agree very well with those of James (1970), while the reflectivity in- 
dicates general agreement, with the proviso that the large energy discrepancy 
near resonance cannot be explained by an inviscid and linear model. Figure 3 (a) 
shows the system response a t  resonance. Figure 3 ( b )  shows the response just be- 
low resonance, with d/W = 0.145. Just above resonance, a t  say d/W = 0.165, 
the sense of the amphidrome is changed from anticlockwise to clockwise. 

For a wider resonator one would also expect resonances with nodal lines along 
the length of the resonator. For instance, if 2alW = 0.60 and b/W = 0.385 there 
are two resonances in the range considered, a t  dlW = 0.16 and 0.335, illustrated 
by the zeros of the transmissivity in figure 4. The nodal line at resonance is 
illustrated in figure 5(a)  for d/W = 0.335. The response a t  the lower resonance 
d/W = 0.16 is illustrated in figure 5 (b) .  It should be noticed that the theoretical 
predictions of the surface elevation in figures 5 ( a )  and (b)  are remarkably con- 
firmed b;y the sketches of resonance made by James (1970, figures 2 and 3). 
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0. I 0.2 0.3 0.4 0.5 

d l  w 
FIGURE 0. Transmitted and reflected wave amplitude for b / W  = 0.385, 2a/W = 0.34. 
Transmitted wave: 0, experimtntd points (James 1970); __ , theory. Reflected wave : 
x , experimental points; - - - - , theory. 

FIGURE 3. 

- 120“ 

t-- 

R :esponse for b/W = 0.385, 2a/W = 0.34. (a) At resonance; 
( 6 )  Just below resonance; d/W = 0.145. 

d / W  = 0.155. 
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d /  w 
FIGURE 4. Ware amplitudes. (i) 2a/TV = 0.60, b/W = 0.385: -, theoretical transmitted 
amplitude ; 0, experimental transmissivity ; x , experimental reflected amplitude at  
resonance. (ii) 3a/W = 0.616, b/W = 0.308: --- , theoretical transmitted amplitude; 
c] , experimental transmitted a.mplitude. 

2 3 '  4 

FIGTJFCE 5. Co-amplitude lines a t  resonance for 2a/W = 0.60, b/W = 0.385. 
(a) d / W  = 0.335 for an input wave of unit amplitude. ( b )  dlTW = 0.16. 



508 8. T. Buchwald and N .  V .  Williams 

1 
0 . 1 1  1 I l l  , I  I I , ,  , 

0 0.2 0.4 0.6 

2a/ W 

FIGURE 6. Comparison of theoretical determination of least -resonant length with 
experiments of James (1970) for different channel widths. Curves: 1, b/W = 0.086; 
2, blW = 0.193; 3, b/W = 0.308; 4, blW = 0.385. 

Figure 4 also gives the transmissivity for the case 2a/W = 0.616, b/W = 0.308, 
when two resonances are very close together. Finally, in figure 6 the computed 
and observed values of the least-resonant lengths for different geometries are 
shown. 

These and other (Williams 1973) results show that there is good agreement 
between the theory and experiment, particularly for the geometry a t  resonance, 
and for the transmissivity. There are energy losses near resonance which are 
probably due to nonlinear effects. Some evidence for this conjecture is given by 
James (1970), who observes that the increases in incident wave amplitude cause 
corresponding increases in energy losses. 

Dijferent depths 

If < 1 the wave speed in the resonator is reduced, and the general effect is as 
if the dimensions of the resonator were increased approximately in the ratio r-H. 
The results of a typical set of calculations are given in figure 7, for 2a/ W, = 0.427 
and b/W, = 0.385, where the resonant length d/ W ,  is plotted against T. The curves 
81-83 are the first three symmetric modes of resonance, in which the displace- 
ment is roughly uniform across the width of the resonator. The curves A ,  and A ,  
are the first two antisymmetric modes. 

The only experimental example is in James (1971 b ) ,  where r = 0.14, W = 23.4 
in., h, = 1.15 in., h, = 8.2 in. and the wave amplitude is 0.5 in. The experimental 
results are not really comparable with the theory for two reasons. First, the wave 
amplitude is not small compared with h,, so that a linear theory is insufficient. 
Second, the wavelength is not sufficiently long, so that shallow-water theory 
does not hold in the channel, with the result that the boundary condition at  the 
resonator mouth is suspect. Nevertheless, the experimental value of resonance 
at d/ W ,  = 0.08 agrees remarkably well with figure 7. 
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1 .o 0.8 0.6 0.4 0.2 0 

W h 2  

FIGURE 7.  Resonant length for various values of 7,  with 2a/W, = 0.427, b / W  = 0.385. 
S1, 8 2  and S 3  are the symmetric modes, and A1 and A2 the antisymmetric modes. 

FIGURE 8. Response for a wide channel; b/W = 0.60, 2a/W = 1.62, d/W = 0.4344. 

Wide channels 

If b/ W > 0.5 there are a t  least two modes of propagation in the channel, and all 
possible propagating modes are present in the diffracted field. Moreover, minima 
in the total transmitted energy, or in any one mode, are not necessarily associ- 
ated with resonance in the resonator. Williams (1973) has calculated the trans- 
mitted energies €or a variety of geometries. As an illustration, figure 8 shows a 
resonance when 2afW = 1.62, b/W = 0.60 and dfW = 0.4344. In this particular 
case the transmitted wave field is almost zero. What there is of the transmitted 
wave is mainly in the second mode, and there is a nodal line along the centre of 
the channel. 

6. The closed channel 
Although there are no experimental results available for a closed channel, 

it is possible to make some comparisons with geophysical examples. A simplified 
model of the Gulf of Carpentaria is as in figure 1 (b ) ,  with a = 480 km, d = 390 km, 
b = 390km, h, = 54.9m (30 fathoms) and h, = 91.5rn (50 fathoms). The point 
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- 16-6 

Hours 

FIGTJRE 9. Theoretical response at  Kuramba to an input of 
unit amplitude in the Arafura Sea. 

K corresponds to tidal recording stations at  Kuramba and a t  Bayley Island. 
Figure 9 gives the calculated response a t  K as a function of the period of an 
input of unit amplitude in the channel (Arafura Sea). 

The most interesting feature is that the observed M, and 8, tidal components 
a t  K are minute, and this is also shown in the calculated response a t  K a t  about 
13 h, a t  which period there is a nodal line diagonally across the resonator. Other 
important features of the response are resonances a t  7.98 h and at 10.36 h. At 
7.98 h there are two nodal lines perpendicular to t,he line K L M ,  and the maximum 
amplification factor of 16 is attained a t  K ,  L and M in figure 1 (b) .  

Alternative dimensions and the effects of the earth’s rotation have been con- 
sidered by Williams (1973, 1974). The rotation affects the phase of the response 
in the resonator, giving rise to some amphidromic points. However, the ampli- 
tude response is not very sensitive to changes of dimension or rotation, so that 
the response curves in figure 9 retain their significance. Currently an analysis of 
records from the Gulf is being undertaken, in order to determine the significance 
of the resonant response of the Gulf to storm surges and periodic trade winds. 

The work was completed during the tenure by N. V. Williams of a C.S.I.R.O. 
postgraduate studentship while on leave from the Australian Department of 

Supply. 
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